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We have shown that proton-coupled carbon-13 2D NOESY experiments, performed on degenerate spin
systems, can provide unique quantitative information about anisotropic reorientational motions and
molecular geometry. Relevant theory for AX2 and AX3 spin systems is presented, assuming the dipole–
dipole and random field relaxation mechanisms of 13C nucleus, and demonstrated on methyl iodide solu-
tion in chloroform. Agreement with experimental intensities of all the six independent peaks is very good
in the whole range of mixing times (up to 45 s).
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1. Introduction

Carbon-13 NMR relaxation measurements in solution are a
powerful tool for studies of molecular dynamics in both small
and large molecules. Spin–lattice (or longitudinal) relaxation is
commonly studied under conditions of broadband proton irradia-
tion [1,2]. Besides removing heteronuclear J-couplings, the decou-
pling renders the 13C spin–lattice relaxation single exponential for
the vast majority of cases [3]. Deviations from the single exponen-
tial spin-lattice relaxation occur if the proton spin systems contain
degeneracies caused by the magnetic equivalence, e.g. in CH2 and
CH3 groupings [4,5].

Studies of longitudinal carbon-13 relaxation without proton
decoupling are much less common. Selected examples are given
in references [6–18]. An important advantage of the study on J-
coupled systems is that it allows investigations of cross-correlated
relaxation phenomena, involving more than one rank-two interac-
tion [19]. In certain situations, it may be advantageous to study the
phenomena of this kind using two-dimensional techniques, such as
different modifications of the NOESY scheme [20,21]. An interest-
ing paper by Huang et al., published long time ago, proposed the
ll rights reserved.
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use of carbon-13 as a ‘‘spy nucleus” in a 2D NOESY experiment,
helping to map the population flows between various spin states
of protons coupled to it [22]. Similar work, using small flip angle
NOESY [23] extended this approach to homonuclear systems
(without magnetic equivalence) and presented a more complete
version of the theory [24]. In this communication, we extend the
13C ‘‘spy nucleus” approach to systems with equivalent protons.
We present the relevant theory and apply it to the example of
13C-labelled methyl iodide in isotropic chloroform solution. We be-
lieve that similar approach can be applied to molecules dissolved
in oriented systems, in particular for studying liquid crystalline
solutions mixed with porous glass particles. Relevant studies are
under way.

The dynamics of methyl iodide as a neat, isotropic liquid was
studied intensively in the past by 13C spin relaxation methods
[25–29]. The molecule has a simple structure and axial symmetry
(C3v point group). Due to the small size, its reorientational mo-
tion in solution is very fast, especially around the symmetry axis,
hence the spin-rotation relaxation mechanism is the most effec-
tive one. Next important mechanism, which has to be considered,
is the 13C–1H dipole–dipole relaxation. Although Simcox et al.
[29] have postulated that the 13C chemical shielding anisotropy
(CSA) mechanism is also non-negligible, we show that in our
experimental conditions (chloroform solution at room tempera-
ture, magnetic field 4.7 T) the pure CSA relaxation is essentially
non-observable. It was shown earlier, that other 13C relaxation
mechanisms, such as the 13C–127I dipole–dipole and the scalar
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relaxation of the second kind (in the terminology of Abragam
[30]) contribute very little to the overall relaxation rate [25–
29]. Attempts were also made to explain the magnitudes of
relaxation rates and molecular reorientation rates, and their tem-
perature dependence [26,28,29].

In the present study, we use NOESY experiments as the main
source of relaxation data. We consider two relaxation mecha-
nisms: the spin-rotation interaction, treated phenomenologically
as a random field process, and all the dipole–dipole interactions
among the four spins. As shown by Huang et al. [22] and Oschk-
inat et al. [24], there is a correspondence between the signal
intensities in proton-coupled 13C NOESY spectra and the relaxa-
tion matrix elements. It is possible to obtain transition probabil-
ities, containing the dynamic information, within the initial rate
approximation [22]. Alternatively, one can solve the master dif-
ferential equation for energy level populations [24]. When the
protons are magnetically-equivalent and the symmetry of the
system is high, as is the case in the CH3I molecule, then some
energy levels become degenerate and the Redfield formalism
[31] must be used instead of the simple transition probabilities
theory [5,10,32]. We therefore aim at utilizing a modification
of the method of Oschkinat et al. [24] for the methyl iodide case
applying simultaneous fitting of the whole pattern of signals
occurring in the NOESY spectra (all measured intensities of diag-
onal and off-diagonal signals) obtained with different mixing
times. Equations for the relaxation matrix elements, expressed
in a minimal operator basis set suitable for the NOESY experi-
ments, are provided for fully degenerate CH2 and CH3 spin sys-
tems under the assumption of negligible CSA relaxation (see
further text).

It is shown that such an approach allows for accurate determi-
nation of reorientational parameters for methyl iodide in isotropic
solution, assuming symmetrical top diffusional model [2,5,33].
2. Theory

2.1. General

Molecular motions manifest themselves in spectral densities
and can be observed as nuclear spin relaxation effects [2,30,34–
36]. Usually experiments leading to the determination of spin-lat-
tice (R1) and spin–spin (R2) relaxation rates as well as the hetero-
nuclear NOE parameter are used as a source of information,
sometimes together with different cross-correlated relaxation
rates (CCRRs) [16,19]. All of those are in fact linear combinations
of spectral densities and do not provide much unique information
in the extreme narrowing regime. Moreover, cross-correlated rates
are usually determined within the initial rate approximation
[16,19], and thus have a higher uncertainty than the R1 and R2

rates. As an alternative, 2D NOESY (EXSY) experiments can be a
useful source of information concerning molecular motions with-
out the use of the concept of R1, R2, and so on, but operating di-
rectly on the relaxation matrix elements. The spin-diffusion
effect, which can disturb measurements, does not occur in the case
of methyl iodide in solution, because the four spin system is well-
defined (the 127I spin can be safely neglected due to its small relax-
ation effect) and the studied solution is not concentrated. It is
therefore possible to analyze accurately the dependence of intensi-
ties of all the diagonal and off-diagonal signals on the mixing time,
avoiding the initial rate approximation and possible errors origi-
nating from it.

The statistical state of a spin system is described by the den-
sity operator or the density matrix q [2,30,31]. In accordance
with the Bloch–Wangsness–Redfield perturbation theory
[31,37], the differential equation for the elements of the density
matrix ~q (the tilde denotes the interaction representation) can be
written as:

d~qaa0 ðtÞ
dt

¼
X
bb0

eiða�a0�bþb0ÞtRaa0bb0 ~qbb0 ðtÞ ð1Þ

where a, a0, b, and b0 denote all possible eigenstates of the consid-
ered spin system, and the terms inside the exponent are written
in short instead of xa �xa0 �xb þxb0 . Here, we use the direct
product states basis because of its simplicity and clear physical
meaning. ~qðtÞ is a column vector of the density matrix elements
(whose time dependence will be omitted in the notation from
now on), and Raa0bb0 is a relaxation matrix element given by Eq. (3).
The expectation value of any observable Q, corresponding to the
operator bQ , at the time t can be obtained from the density matrix
using Eq. (2), where both bQ and ~q are given in the form of matrix
representations. In other words, Q can be presented as a linear com-
bination of the elements of ~q.

hQðtÞi ¼ Tr bQ ~qðtÞ
h i

ð2Þ

It follows from Eq. (1) that, for a system having n energy
states, the dimension of the density matrix will be n� n, and
the same (n2) will be the length of the ~qij vector in the
Liouville space. Consequently, the R matrix will have a dimen-
sion of n2 � n2. Usually, however, the secular approximation is
applied, implying retaining only those elements of R, for which
xa �xa0 �xb þxb0 ¼ 0 [2,31]. Elements of the R matrix are given
by:

Raa0bb0 ¼
1
2

Jaba0b0 ða0 � b0Þ þ Jaba0b0 ða� bÞ � da0b0
X

c
Jcbcaðc� bÞ

 

�dab

X
c

Jca0cb0 ðc� b0Þ
!

ð3Þ

where Jaa0bb0 ðxÞ elements are given by:

Jaa0bb0 ðxÞ ¼
X

g

X
g0

ngng0
Xl

q¼�l

hajbT g
l;�qja

0ihb0jbT �g0l;�q0 jbiJ
gg0
l ðxÞ ð4Þ

The operators relevant in the proton-coupled 13C NOESY exper-
iments are associated with the spin–lattice (longitudinal) relaxa-
tion processes, and can be represented conveniently using single
transition operators introduced by Wokaun and Ernst [38] (see
the section devoted to the methylene group). The matrix represen-
tations of these operators have only diagonal elements different
from zero, therefore according to Eq. (2) we are interested just in
the diagonal elements of the density matrix. However, due to the
degeneracy of some energy levels in the AXn spin systems
(n > 1), condition xa �xa0 �xb þxb0 ¼ 0 is fulfilled as well for
some off-diagonal elements of density matrix. Therefore those also
need to be included [10,32].

In Eq. (4), ni denotes the interaction strength, e.g. the dipole–di-
pole coupling constant in the case of dipolar interaction, bT i

l;�q is the
q-th component of the rank-l irreducible tensor operator, depen-
dent only on spin operators, and Jgg0

l ðxÞ is a reduced spectral den-
sity function of rank l corresponding to interactions g and g0. The
summation over g and g0 goes through all the possible interac-
tions; thus, all the cross-correlations are accounted for in a natural
way. Interaction strength constants may be incorporated into
Jgg0

l ðxÞ, forming ‘‘complete” (non-reduced) spectral densities,
which facilitates the notation.

After constructing the relaxation matrix using Eqs. (3) and (4),
there are two ways to proceed to the final result. The first one im-
plies that Eq. (1) will be solved directly, using linear algebra meth-
ods, and then converted into observables through a matrix which



Fig. 1. Energy level diagram for the 13CH2 group. Single quantum carbon and proton
transitions are indicated with solid and dashed lines, respectively.
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transforms populations to/from coherences. This approach is
straightforward and convenient when the spin system does not
contain degenerate transitions [8]. In this case, the matrix S with
elements corresponding to the intensities in the proton-coupled
NOESY spectra will be given by (assuming weak coupling condi-
tions) [24]:

SM�M ¼ PM�NUR exp �U�1
R RN�NURsm

� �
U�1

R PN�M ð5Þ

where UR is the matrix of column eigenvectors of R, sm is the mixing
time, the rectangular matrix PN�M converts coherences into popula-
tions, and PM�N ¼ PT

N�M does the opposite conversion [24].
The second way is to set up the relaxation matrix using a new,

smaller and orthogonal basis set, which will contain the observ-
ables in the NOESY experiment. The relaxation matrix in this basis
set will be denoted as A, and the matrix formed by column vectors
representing the basis vectors as V. We start with V containing
vectors corresponding to the NOESY observables. These vectors
span a subspace K of the space of all the observables. Now, the
problem is that this basis is incomplete with respect to dynamics
defined by the relaxation matrix R. Since R in general couples all
the observables, an initial state within K will during time evolu-
tion acquire components outside of K. Thus, we have to find
invariant subspace L, containing K, such that any vector belonging
to L will not leave it during evolution under R [39]. As will be
shown below, the dimension of L is in practice not much greater
than that of K.

The practical procedure of determining the remaining basis vec-
tors to make V complete under dynamical evolution is the follow-
ing: first we define the matrix B as:

B ¼ 1� VVT
� �

RV ð6Þ

The matrix B contains components of RV, orthogonal to the
space spanned by the basis vectors V. Therefore, if the basis set V
is complete, B will be a zero matrix, and if it is not, some non-zero
elements will be present. Vectors needed for completion of the ba-
sis set can be guessed from the symmetries of the column(s) of the
matrix B. Then we proceed in an iterative way, adding one or few
vectors to the V and recomputing B each time. One has to be aware
that the described procedure may lead to a basis set which is not
minimal, so additional checks are advised.

The bases obtained for AX2 and AX3 spin systems are similar (in
part identical) to the bases reported by Werbelow and Grant [10].
Among the advantages of the described method are: a direct corre-
spondence of a part of the matrix to the experimental spectrum,
and (usually) the reduction of the dimension of the problem. The
transformation of R into A is simple, and if the V vectors are nor-
malized to 1, A will be a square symmetric matrix, with dimensions
equal to the number of basis vectors:

A ¼ VT RV ð7Þ

The final solution of the problem will be similar to Eq. (5), but now
the matrix A will replace R, and, if 90� pulses in the NOESY sequence
are used, the P matrices will have just few non-zero elements cor-
responding to population deviations from the thermal equilibrium
at the beginning of the mixing period:

S ¼ PT
AUA exp �U�1

A VT RV
� �

UAsm

� �
U�1

A PA ð8Þ

Here, the PA matrix contains square roots of number of transitions,
corresponding to the certain observable, on its diagonal, while all
non-diagonal elements are zero, its main purpose is to provide cor-
rect relative magnitudes of the elements of the matrix S. For exam-
ple, the PA matrix for the AX3 spin system will have dimensions 11
by 4, and only 4 non-zero elements:
PA ¼

1 0 0 0
0

ffiffiffi
3
p

0 0
0 0

ffiffiffi
3
p

0
0 0 0 1
0 0 0 0
..
. ..

. ..
. ..

.

0 0 0 0

2666666666664

3777777777775
ð9Þ

The resulting elements of the matrix S for a certain sm value will
be proportional to the intensities of the measured NOESY spectrum
with a one-to-one correspondence.

Let us now discuss practical aspects of the calculations. The ma-
trix R and the basis vectors V can be obtained either analytically,
for example, using computer algebra software, or by calculating
elements of the R matrix ‘‘on the fly”, in both cases according to
Eqs. (3) and (4). The analytical solution seems to be more useful,
because once the elements of the A matrix are calculated, Eqs.
(3) and (4) are no longer needed, it might also be helpful for com-
parison of the results. Mature programs capable to calculate a sym-
bolic form of relaxation matrix elements or a relaxation rate
corresponding to a given operator are already available for free
use [40,41]. We have, however, written our own script using Max-
ima [42], which is intended to compute elements of the relaxation
matrix for spin systems with possible degeneracies. The correct-
ness of the outcome produced by the script was verified by com-
parison with the results for AX2 and AX3 spin systems published
by Werbelow and Grant [10], and a complete equivalence of the
two approaches was found. This comparison required transforma-
tion of the R using basis sets given by those authors, according to
Eq. (7).

2.2. Basis vectors and relaxation matrices for the methylene group

The energy level diagram for the CH2 group, analogous to that of
Werbelow and Grant [10], is shown in Fig. 1. We use the same
notation and the same set of direct product states as the basis:

1j i ¼ aaaj i; 2j i ¼ baaj i; 3j i ¼ aabj i; 4j i ¼ abaj i; 5j i
¼ babj i ¼ k 4j i; 6j i ¼ bbaj i ¼ k 3j i; 7j i ¼ abbj i
¼ k 2j i; 8j i ¼ bbbj i ¼ k 1j i ð10Þ

where k stands for total spin inversion operator. The first spin is the
carbon-13.

The pairs of levels 3, 4, and 5, 6 are degenerate, and the secular
approximations makes it necessary to consider 4 off-diagonal ele-
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ments of the density matrix: q3;4, q4;3, q5;6, q6;5 (from here on, we
omit the tilde to simplify the notation) in addition to the diagonal
ones. The complete orthogonal basis set relevant for the NOESY
experiment is then given by the following vectors consisting of
the density matrix elements qi;j:

V1 ¼ q1;1 � q2;2

V2 ¼
1ffiffiffi
2
p ðq3;3 þ q4;4 � q5;5 � q6;6Þ

V3 ¼ q7;7 � q8;8

V4 ¼
1ffiffiffi
2
p ðq1;1 þ q2;2 � q7;7 � q8;8Þ ð11Þ

V5 ¼
1
2
ðq1;1 þ q2;2 � q3;3 � q4;4 � q5;5 � q6;6 þ q7;7 þ q8;8Þ

V6 ¼
1ffiffiffi
2
p ðq3;4 þ q4;3 þ q5;6 þ q6;5Þ

V7 ¼
1ffiffiffi
2
p ðq3;4 þ q4;3 � q5;6 � q6;5Þ

The first three vectors correspond to observables of the NOESY
spectrum. Those can be presented using single transition
operators:

V1 ¼ Tr Ið1;2Þz q
h i

V2 ¼
1ffiffiffi
2
p Tr ðIð3;5Þz þ Ið4;6Þz Þq

h i
ð12Þ

V3 ¼ Tr Ið7;8Þz q
h i

where for wi and wj being eigenstates of the spin system [38]:

hwijIðr;sÞz jwji ¼
1
2
ðdirdjr � disdjsÞ ð13Þ

The remaining 4 vectors (V4–V7) are needed to complete the ba-
sis set. Two of them (V4, V5) contain solely the diagonal elements of
the density matrix q, and the last two only the off-diagonal ele-
ments. The last 4 vectors are identical to those found by Werbelow
and Grant. However, they correspond to the basis vectors belong-
ing to the two orthogonal basis sets, y and q, having 4 and 3
elements, respectively [10]: V4 � y1, V5 � q2, V6 � q3, V7 � y4.
The ‘‘mixing” of the basis vectors is a consequence of reduced sym-
metry of our basis set vectors in comparison with those defined in
Ref. [10].

Utilizing Eq. (7), the elements of the A matrix can be given as:

A1;1 ¼
1
2

A5;5 þ 2JHHð2xHÞ þ 2JHCHðxCÞ þ 2JCHðxCÞ þ rfC

A1;2 ¼
1ffiffiffi
2
p ð2JCHðxH þxCÞ þ

1
3

JCHðxH �xCÞ � JHHðxHÞ

� JCHðxHÞ � rfHÞ
A1;3 ¼ �2JHHð2xHÞ

A1;4 ¼
ffiffiffi
2
p

JCHðxH þxCÞ �
1
6

JCHðxH �xCÞ þ JCHHðxHÞ
� �

;

A1;5 ¼
ffiffiffi
2
p

A1;4

A1;6 ¼ �
ffiffiffi
2
p

JHCHðxH þxCÞ �
1
6

JHCHðxH �xCÞ þ JCHHðxHÞ
� �

A1;7 ¼
1ffiffiffi
2
p ð2JHCHðxH þxCÞ þ

1
3

JHCHðxH �xCÞ � JHHðxHÞ

� JHCHðxHÞ � rfHÞ

A2;2 ¼
1
2

A5;5 � 2JHCHðxCÞ þ 2JCHðxCÞ þ rfC; A2;3 ¼ A1;2

A2;4 ¼ 2JCHðxH þxCÞ �
1
3

JCHðxH �xCÞ � 2JCHHðxHÞ

A2;5 ¼ 0; A2;6 ¼ 0
A2;7 ¼ 2JHCHðxH þxCÞ þ
1
3

JHCHðxH �xCÞ þ JHHðxHÞ

þ JHCHðxHÞ þ rfH

A3;3 ¼ A1;1; A3;4 ¼ A1;4; A3;5 ¼ �A1;5; A3;6 ¼ �A1;6;

A3;7 ¼ A1;7

A4;4 ¼
1
2

A5;5 þ 4JHHð2xHÞ

A4;5 ¼ 0; A4;6 ¼ 0

A4;7 ¼ 2JHCHðxH þxCÞ �
1
3

JHCHðxH �xCÞ � 2JCHHðxHÞ

A5;5 ¼ 2ð2JCHðxH þxCÞ þ
1
3

JCHðxH �xCÞ þ JHHðxHÞ

þ JCHðxHÞ þ rfHÞ
A5;6 ¼ �

ffiffiffi
2
p

A2;7; A5;7 ¼ 0

A6;6 ¼
1
2

A5;5 � 2JHCHðxCÞ þ 2JCHðxCÞ �
4
3

JHCHð0Þ þ
4
3

JCHð0Þ

A6;7 ¼ 0; A7;7 ¼
1
2

A5;5 þ rfC �
4
3

JHCHð0Þ þ
4
3

JCHð0Þ ð14Þ

Some A matrix elements are expressed via element A5,5 to short-
en the formulas. Here and later we employ the same normalization
of spectral densities as in Ref. [10]. The spectral densities of type
JHH and JCH are of the ‘‘auto” type, and those containing three or
four (for four-spins system) atomic symbols are cross-correlated
ones. In case of three atomic symbols the middle one is common
for both interactions.

We retain the frequencies at which the J’s are to be evaluated,
even though we are in extreme narrowing range and it is strictly
speaking not necessary. The symbols rfH and rfC denote the random
field type rates, which in our treatment are just fitting parameters.
Analytical equations for spectral densities for AX3 spin system will
be given in the next section.

It should be stressed that the present treatment is valid for
13CH2 groups with magnetically-equivalent protons. The common
case of methylene groups with the carbon-13 spectrum in the form
of a triplet but with the two protons characterized by different
chemical shifts requires, strictly speaking, a somewhat different
treatment. Typically, such groupings are either approximated as
AX2 [12] or AMX [16].
2.3. Basis vectors and relaxation matrices for the methyl group

The formation of a complete orthogonal basis set for the methyl
group is more challenging than that of a methylene group, because
there are 40 non-zero elements in the density matrix. The proce-
dure is essentially the same as described above. Again, we use
the numbering of the basis product states following Werbelow
and Grant [10]. For the eigenstates defined in Eq. (15) (the first spin
denotes carbon-13) the groups of levels 3, 4, 5; 6, 7, 8; 9, 10, 11;
and 12, 13, 14 are degenerate. The energy level diagram for the
methyl group, again based on the work of Werbelow and Grant
[10] is shown in Fig. 2.

1j i ¼ aaaaj i; 2j i ¼ baaaj i; 3j i ¼ aaabj i; 4j i
¼ aabaj i; 5j i ¼ abaaj i; 6j i ¼ baabj i; 7j i
¼ babaj i; 8j i ¼ bbaaj i; 9j i ¼ aabbj i ¼ k 8j i; 10j i
¼ ababj i ¼ k 7j i; 11j i ¼ abbaj i ¼ k 6j i; 12j i ¼ babbj i
¼ k 5j i; 13j i ¼ bbabj i ¼ k 4j i; 14j i ¼ bbbaj i
¼ k 3j i; 15j i ¼ abbbj i ¼ k 2j i; 16j i ¼ bbbbj i ¼ k 1j i ð15Þ

Therefore, we need this time to consider 24 off-diagonal ele-
ments. In the case of a methyl group there are four signals (observ-
ables) on the diagonal in the NOESY spectrum, and additional 7
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vectors are needed to complete the basis. Three of them contain
just the diagonal elements of q, and the rest only the off-diagonal
ones.

The normalized basis vectors are given by:

V1 ¼ q1;1 � q2;2

V2 ¼
1ffiffiffi
3
p ðq3;3 þ q4;4 þ q5;5 � q6;6 � q7;7 � q8;8Þ

V3 ¼
1ffiffiffi
3
p ðq9;9 þ q10;10 þ q11;11 � q12;12 � q13;13 � q14;14Þ

V4 ¼ q15;15 � q16;16

V5 ¼
1ffiffiffi
2
p ðq1;1 þ q2;2 � q15;15 � q16;16Þ

V6 ¼
1ffiffiffi
6
p ðq3;3 þ q4;4 þ q5;5 þ q6;6 þ q7;7 þ q8;8

� q9;9 � q10;10 � q11;11 � q12;12 � q13;13 � q14;14Þ

V7 ¼
1

2
ffiffiffi
6
p ð�3q1;1 � 3q2;2 þ q3;3 þ q4;4 þ q5;5 þ q6;6

þ q7;7 þ q8;8 þ q9;9 þ q10;10 þ q11;11 þ q12;12

þ q13;13 þ q14;14 � 3q15;15 � 3q16;16Þ

V8 ¼
1ffiffiffi
6
p ðq3;4 þ q3;5 þ q4;3 þ q4;5 þ q5;3 þ q5;4

� q12;13 � q12;14 � q13;12 � q13;14 � q14;12 � q14;13Þ

V9 ¼
1ffiffiffi
6
p ðq3;4 þ q3;5 þ q4;3 þ q4;5 þ q5;3 þ q5;4

þ q12;13 þ q12;14 þ q13;12 þ q13;14 þ q14;12 þ q14;13Þ

V10 ¼
1ffiffiffi
6
p ðq6;7 þ q6;8 þ q7;6 þ q7;8 þ q8;6 þ q8;7

� q9;10 � q9;11 � q10;9 � q10;11 � q11;9 � q11;10Þ

V11 ¼
1ffiffiffi
6
p ðq6;7 þ q6;8 þ q7;6 þ q7;8 þ q8;6 þ q8;7

þ q9;10 þ q9;11 þ q10;9 þ q10;11 þ q11;9 þ q11;10Þ ð16Þ

The relaxation matrix elements in this new basis set are:
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Fig. 2. Energy level diagram for the 13CH3 group. Single quantum carbon and proton
transitions are indicated with solid and dashed lines, respectively.
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Like in the previous section, some elements of A matrix are ex-
pressed using other elements to simplify the formulas. A large num-
ber of elements of the A matrix are zero or just proportional to other
elements. This is because the starting matrix R contains some sym-
metries, for example among the 1600 (40� 40) elements for the
CH3 group only 24 are distinct [10]. However, we did not consider
any symmetries in our symbolic calculations, because the evalua-
tion of all the 1600 elements takes only around 30 seconds on a
desktop computer using our home-written Maxima script.

Assuming the symmetric top diffusional motion for CH3I, the J’s
can be given as [10]:
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Fig. 3. 2D NOESY spectra of methyl iodide collected at d
where h is a polar angle (for tetrahedral geometry h ¼ 109:47�), and
u is an azimuthal angle. D? and Dk are the rotational diffusion con-
stants. A complete geometrical picture is shown in Fig. 3 of Ref. [10].
3. Experimental

Carbon-13 methyl iodide (13CH3I; 99 at.%, delivered by Euriso-
top) was dissolved in deuterated chloroform (CDCl3; 99.8 at.%,
MSD isotopes) so that the concentration was 10 mol.%. The solution
was transferred to a 5-mm Wilmad NMR tube which was attached
to a vacuum line for degassing. After degassing the tube was sealed
with a flame.

13C NOESY experiments were carried out on a Bruker DPX200
spectrometer (13C frequency 50.32 MHz) using a 5-mm BBI gradi-
ent probe head. Temperature was kept fixed at 300 K. Four scans
were accumulated for each mixing time, the relaxation delay being
53 s. A 90� pulse (12.18 ls) was applied, and 8 k and 128 points
were collected in the direct and indirect dimensions, respectively,
the frequency window being 11 ppm � 11 ppm. Altogether 19
mixing times extending from 3 ms to 45 s were applied.

Intensities of the peaks were determined with the aid of Sparky
program [43].
4. Results and discussion

4.1. The appearance of the 13C NOESY spectra

The proton-coupled 13C NOESY for the methyl carbon of methyl
iodide consists, at a very short mixing time, of four diagonal peaks
corresponding to the four components of the quartet in the 1D 13C
spectrum. For longer mixing times, the off-diagonal peaks within
the multiplet build up and decay. The spectra at the mixing times
of 50 ms, 300 ms and 5000 ms are shown in Fig. 3.

The intensities of the 16 peaks correspond to the elements of
the S-matrix in Eq. (8). The 2D peak definitions used in this section
are shown in Fig. 4. The diagonal in Figs. 3 and 4 goes from upper
left corner to the lower right one (unlike in a usual 2D spectrum) to
be in consistence with the mathematical matrix representation.
Only the upper right part is depicted in Fig. 4, because the matrix
S, like A, is symmetric. As a result of negligible CSA relaxation
(see below), the S matrix is in fact symmetric with respect to both
diagonals, and in consequence there are only six independent sig-
nals (as shown in Fig. 4).

The experimental intensities were analyzed using a program
written in Fortran, which allows both simulations and data fitting.
Lapack [44] routines are used for diagonalization of the A matrix.
The possible fitting parameters are: a scaling factor (needed be-
cause experimental intensities are reported in arbitrary units),
the C–H bond length, hCH (the angle between the three-fold sym-
metry axis and the C–H vector), the rotational diffusion coefficients
ifferent mixing times (50 ms, 300 ms, and 5000 ms).



Fig. 4. 2D spectrum signals notation.
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Dk, D?, and the random field rates for protons and for the carbon-
13 spin (a total of seven parameters). The input file contains inten-
sities of all the distinct lines (A, B, C, D, E, and F; see Fig. 4) for each
mixing time, which are obtained by averaging corresponding
experimental values. Because different lines have different intensi-
ties, and the signal-to-noise ratio is high, the statistical weight of
different lines was kept approximately constant.

The ground state geometry of methyl iodide determined from
the rotational constants is: rCH ¼ 1:088Å, rCI ¼ 2:142Å, aHCH ¼
111�310 [45]. The corresponding hCH is 107:34�. We used this value
of hCH and rCH ¼ 1:11Å (increased by around 2% in order to account
for vibrational effects [46,47]) during the data fitting. The simulta-
neous fitting of build-up/decay for all the six lines, keeping rC�H

and hCH fixed, produced the results shown in Table 1.
It is interesting to note that it is possible to determine directly

both rotational diffusion constants with a good accuracy using the
NOESY method. Previous attempts, when conventional R1 and NOE
measurements were used, allowed only for the determination of an
effective correlation time seff for the C–H bond (e.g. [29]). The coef-
ficients Dk and D? were then estimated using different models, and
the resulting seff was compared with experimental one [29]. When
the NOESY method is used, however, the different spectral densi-
ties (especially the cross-correlated ones) provide much more
geometry-specific information.

As Dk is 10 times larger then D?, the rotational motion of methyl
iodide is strongly anisotropic (as was expected). Quite similar val-
ues were reported previously [29]. Correlation times calculated
from the diffusion constants are very short: sk ¼ 0:083ps, and
s? ¼ 0:88ps. Thus, the rotational motion of methyl iodide mole-
cules is very fast, and partly outside of the diffusional range [48].
Assuming the C–H bond length to be 1.1 Å, the pure inertial
rotational correlation times at 300 K are: sk ¼ 0:068ps, and
s? ¼ 0:32ps. It means that the rotational motion around the sym-
metry axis is in the inertial regime, and even the tumbling motion
is partly outside of the diffusional range. In this regime, equations
for spectral densities become more complicated, with three dis-
tinct correlation times replacing the two diffusion coefficients
[49]. However, we found that introducing an additional parameter
Table 1
Fitted parameters and their uncertainties for iodomethane in chloroform solution

Parameter Value

Scaling factor 87.57 ± 0.17
rCH (Å) 1.11
h (�) 107.34
DkðHzÞ 2:0� 1012 � 0:3� 1012

D?ðHzÞ 1:9� 1011 � 0:2� 1011

rfH (s�1) 0.121 ± 0.001
rfC (s�1) 0.068 ± 0.002
does not give any noticeable improvement in the fitting. Thus, we
decided to use unmodified Eqs. (18)–(20).

Using obtained Dk and D?, the pure dipole–dipole 13C R1;DD can be
estimated to be 0.016 s�1. Therefore, the ‘‘random field” mechanism
(arising mainly because of spin-rotation relaxation) is dominant
(compare Rtheor

1;rf ¼ 0:068s�1 with Rtheor
1;DD ¼ 0:016s�1 for the 13C

nucleus). From these data we obtain Rtheor
1;tot ¼ 0:084s�1ðTtheor

1;tot ¼
11:9sÞ, and gtheor ¼ 0:38, while our experimental values are:
Texp

1;tot ¼ 11:6 � 0:5s and gexp ¼ 0:39 � 0:05, therefore our results,
obtained from NOESY experiments, are confirmed independently.
It is worth noting, that the amount of data obtained using the NOESY
approach, together with conventional relaxation parameters, may
be sufficient for determination of some structural parameters. For
example, fixing hCH at tetrahedral angle value, 109.5�, will result in
Dk ¼ 3:0� 1012 Hz, while D? remains unchanged. Consequently, in
this case Rtheor

1;DD ¼ 0:013s�1, Rtheor
1;rf ¼ 0:072s�1ðTtheor

1;tot ¼ 11:8sÞ, and,
finally, gtheor ¼ 0:30 is obtained, evidencing worse agreement of pre-
dicted g with the experimental value.

Theoretical and experimental peak intensity profiles are com-
pared in Fig. 5. The blue lines correspond to the experimental,
and the red ones to the theoretical intensities. The agreement be-
tween the two sets of curves is very good.

4.2. The role of the chemical shielding anisotropy relaxation

The CSA interaction is a rank-two interaction, in analogy with
the dipole–dipole case, and thus cannot be treated phenomenolog-
ically as the spin-rotation (rank one) interaction. If the CSA–di-
pole–dipole cross-correlations are small, there is no need to
complicate the treatment, which would require a consideration
of new parameters. Contrary to the conclusions of Simcox et al.
[29], two kinds of independent evidence can be given to show that
the rate of the CSA auto relaxation is negligible at 4.7 T magnetic
field. The value of chemical shielding anisotropy of the 13C nucleus
in CH3I is around �40 ppm, as obtained recently from liquid crystal
measurements [50], and quantum chemical calculations [51]. Be-
cause of the symmetry of the molecule, the unique axis of the
13C CSA tensor coincides with the C3 axis and the CSA relaxation
rate depends only on the tumbling reorientation rate. Assuming
Dr ¼ �40ppm, B0 ¼ 4:7T, and D? ¼ 1:9� 1011 Hz (see Table 1
above), the CSA contribution to the spin-lattice relaxation rate,
R1;CSA ¼ 1:9� 10�5 s�1 is obtained, which is more than 800 times
slower than R1;DD ¼ 0:016s�1. However, the CSA–dipole–dipole
CCRR will not be so small, because while R1;DD and R1;CSA are propor-
tional to the appropriate squared interaction strength constants,
Fig. 5. Comparison of experimental (blue) and theoretical (red) intensity profiles.
Points are connected by straight lines for convenience. For the lines labeling
convention see Fig. 4.



Fig. 6. Time dependence of the diagonal line intensities in NOESY experiment.
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the cross-correlated CDD�CSA rate is proportional to the dipole–di-
pole coupling constant and c13CDrB0. In the case of small Dr, the
CCRR attains a much higher value than the R1;CSA [2,21]. For exam-
ple, Clong

DD�CSA can be roughly (omitting geometrical relations) esti-
mated to be around 1= 1þ

ffiffiffiffiffiffiffiffiffi
800
p� �

� 0:034ð3:4%Þ of the dipole–
dipole auto relaxation rate, which is not completely negligible.
Yet, the inspection of the intensities of the outermost diagonal sig-
nals of the 13C quartet shows that the left- and right-most intensi-
ties are indistinguishable. This means that we see no evidence of
the CSA–DD cross-correlation, probably partly due to the masking
by a large spin-rotation contribution (Fig. 6).
5. Conclusions

The relevant theory for the signal intensities in proton-coupled
carbon-13 NOESY experiments was derived for degenerate spin
systems such as 13CH2 and 13CH3 groups. It was demonstrated,
on a sample of carbon-13 enriched methyl iodide dissolved in chlo-
roform, that the corresponding experiments with variable mixing
times can be interpreted quantitatively, and yield relevant infor-
mation on anisotropic reorientation of small molecules, even in a
case where the random field (spin-rotation) relaxation mechanism
is very important.

The method might be a general tool for analyzing the effects of
the environment on the dynamics of small molecules. We believe
that it would work even better in a more viscous system, where
the dipole–dipole relaxation plays a larger role, and could probably
also be applied for studying liquid–crystalline solutions. Whether
it could also be useful for investigations of isolated methyl groups
in larger molecules is an open question.
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